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SUMMARY 

The reliability growth process, applied to a complex 

system under development, involves surfacing failure modes, 

analyzing the modes and their causes, and implementing 

corrective actions (fixes) to detected problems.  In such a 

manner, the system reliability is grows and its configuration is 

going to be mature with respect to reliability. The 

conventional procedure of the Reliability growth implies 

evaluation of two principal parameters of the Non-

Homogeneous Poison Process (NHPP) related to the failure 

rate only. In addition to the Reliability aspect, the Availability 

factor, and, as the result, the Availability growth (not only 

Reliability growth) is extremely important for the repairable 

Systems. Yet because the standard NHPP does not take into 

account the repair rate parameters, the practitioners are 

awaiting for a long time for an expanded procedure for the 

Availability Growth tracking. This paper suggests a model and 

a numerical method to evaluate these parameters, establishing 

consequently the Inherent Availability Growth model, i.e. 

considering only corrective maintenance times due to failures. 

The model can be further generalized for Operational and 

Achieved Availability by taking in account the preventive 

maintenance, administrative and logistics times as appropriate.   

1 INTRODUCTION 

Accurate reliability prediction and control play an 

important role in the product cost-effectiveness and 

profitability.  Costs of a product service within the warranty 

period or under the service contract are the major expense and 

significant pricing factor.  Proper spare part stocking and 

support personnel hiring and training also depend upon a good 

reliability predictions.  On the other hand, missing reliability 

targets may invoke contractual penalties and even loss of 

business.  

Telecommunication networks, oil platforms, chemical 

plants and airplanes consist of a great number of subsystems 

and components that are all subject to failure.  Reliability 

theory studies system failure behavior in relation to their 

component failure behavior, which often isn't easier to 

analyze.  

Typical task in Reliability Management is the Reliability 

Growth Analysis, which deals with Test-Analyze-and-Fix 

process.  A repairable system is the system which can be 

restored to satisfactory operation by any action other than the 

replacement of the entire system: i.e. from parts replacements 

to adjustments and settings.  When discussing the rate at 

which failures occur during system operation time (and are 

then repaired), one can define a Rate of Occurrence of Failure 

(ROCOF) or "failure rate". 

For systems with repairable failures the standard model is 

NHPP.  According to this model Amount of Failures into 

small interval [T; T + t] is equaled for Rate(T)t.  For NHPP 

Power Law (Crow model, AMSAA model) it is assumed, that 
( )1)T(Rate −βΤλβ=  

i.e. first failure is according to the Weibull Distribution, λ and 

β are the Power Law parameters.  

For any NHPP process with intensity function R(T), the 

distribution function for the inter-arrival time t to the next 

failure, given that the previous failure just occurred at time T, 

is known as  
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In particular, for the Power Law the waiting time to the next 

failure, given that the failure occur at time T, has a probability 

density function   

( ) ( )( )( )ββ−β −+λ−+λβ= TtTexptT)t(f
1 . 

This NHPP Power Law model really is same as in the Duane 

model, for which is assumed, that  

( )α
δγ −= tMTBFcumul

, 

where γ and α are the Duane model parameters, 
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λ
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During repairable systems analysis, two main problems are 

solved: 

• Definition of NHPP distribution parameters by means of 

statistics of failures 

• Forecasting of some output criteria, e.g. Amount of 

failures at some period, Mean Time to Failure (MTTF), 

Mean Time to Repair (MTTR), etc., based on obtained 

parameters. 

This classical task of Reliability Growth Analysis is not 

enough for repairable systems with essential Availability 

needs. In this case the process can be extended for the 

Availability Growth Analysis, which assumes, that repairable 

systems’ restorations are performed due to two factors – 



failure rate and repair rate [1].  For this task one has to define 

parameters of "mixed" flows – failures and repairs – instead of 

single ("continuous") flow of failures for the standard NHPP 

task. 

The rest of the article is organized as follows.  Chapter 2 

introduces Availability Growth model as extension of 

Reliability Growth model.  First the simplest case – single 

system is considered.  Various techniques to solve this model 

are presented in Chapter 3. Chapter 4 presents the Cross-

Entropy method, as applicable to search for/estimate the 

proposed model parameters.  The more challenging tasks of 

Availability Growth are tackled in Chapter 5.  Chapter 6 

shows how to get some output estimations of the Availability 

Growth.  

2 DEFINITION OF DISTRIBUTION PARAMETERS FOR 

SINGLE SYSTEM 

First consider case of single system.                                    

Input statistics of failures and repairs is as following: 

 TF[1], TR[1],…, TF[i], TR[i],…, TF[n], TR[n], where 

n is amount of failures, 

TF[i] is time of failure number i (failure arrival time – FAT), 

TR[i] is time of finishing of repair number i, i = 1…n. 

Assume that both failure flow and repair flow are NHPP 

processes.  So,  
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One has to define parameters λf, βf, λr, βr and for this purpose 

MLE (Maximum Likelihood Estimations) approach can be 

used.  

Comment. Generally speaking, failure and/or repair flows 

can be described by means of some other NHPP Law (e.g. 

Exponential Law of ROCOF), but usually NHPP Power Law 

is used. 

To define these parameters for flow of failures, two 

different cases should be considered: 

I. Failure Rate doesn't change during repair.  

In this case the deterioration (or reliability growth) of the 

system during repair is absent (for example, during a repair the 

tire failure rate isn't increased, because really it isn't influenced 

by time, rather by miles).  For this case the classical exact 

Crow formulas [2] are applicable: 
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where Z[i] are "shifted" failure arrivals times and last 

measurement time (without influence of repair time): 

Z[1] = TF[1], Z[i + 1] = Z[i] + (TF[i + 1] – TR[i])  

II. Failure Rate changes during repair as usually.  

In this case the deterioration of the system during repair is 

normal (for example, during repair the car failure rate is 

increased according to the time increase).  For this case the 

classical Crow formulas are not applicable.  Conditional PDF, 

that i
th

 failure will be at moment TF[i] on condition, that       

(i-1)
th

 repair has been finished at moment TR[i-1], is   
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Comment. In this expression for i = 1 TR[0] = 0 is used. 

The goal is to search for the values of λf and βf such, that 

Negative LogLikelihood  will be minimum: 
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 (2) 
To define required parameters for repair flow, only one case 

has to be considered – changes of Repair Rate during repair 

don’t differ from these during normal operation.  Formulas 

will be same, as above.  Conditional PDF, that i
th

 repair will 

finish at moment TR[i] in condition, that i
th

 failure was at 

moment TF[i], is 
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A goal is to search for values of λr and βr such, that Negative 

LogLikelihood  will be minimum: 
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3 COMPARISON OF DIFFERENT GLOBAL 

OPTIMIZATION APPROACHES 

Global Optimization of a non-linear function is a common 

approach for solving multiple practical problems (supply 

optimization, text categorization, distribution parameters 

estimation, etc.).  That’s because the Linear Regression model 

can not be used for interval and multiplied censored data: for 

three parameter Weibull estimation, for Duane model with 

multiple systems, for Gompertz model, etc. In this numerous 

cases one should search for distribution parameters by means 

of non-linear and non-convex, global optimization – both for 

MLE and non-linear regression.  

The task is to search for a value of Z, which provides min 

G(Z) under constraints Lowj <= z[j] <= Highj , j = 1…K, 

where:                        

Z = {z[1],…,z[j],…z[K]} is a set (vector) of parameters 

K is amount of parameters 

Lowj is Low Boundary of Parameter j value (j = 1…K)  

Highj is High Boundary of Parameter j value (j = 1…K)  

G is some Goal Function (analytical-form, or table, or even 

algorithm-calculated-form), dependent of vector Z.  

To solve this task, two different approaches can be used: 

I. To write and transform derivatives of Goal Function 

(e.g., LogLikelihood for MLE method, Sum of Least 

Squares for Non-Linear Regression method, etc.) for 

each single task, to solve system of non-linear 

equations, corresponding these situations, to support 

Global Minimum finding (instead of possible local 

minimum finding) by means of convex/concave 

check, etc. 

II. To use "direct search methods", provided universal 

search of Global Minimum (without analytical 



definition of derivatives). 

For the first approach the complex analytical expressions 

should be defined for derivatives for each single task.  

Formerly this approach was commonly used, requiring 

additional resources for both algorithm development and 

software implementation for each single task. For example, 

Quasi-Newton method minimizes the Negative LogLikelihood 

Function in order to bring partial derivatives to zero.  Perhaps, 

it is not very tough job for simple cases, but for more complex 

models this approach requires essential additional efforts.  

The second (universal) approach allows to search for the 

optimal solution not only for a single task, but rather for all 

similar situations (LogNormal, Gamma and other 

distributions, MLE for repairable failures, Non Linear 

Regression for Gompertz model, etc.), i.e. in general - for all 

complex non-convex, multi-extremal optimization tasks. 

Contrasting to "derivative"-oriented algorithms, the proposed 

will require only one implementation.  

For the last approach a lot of methods based on gradient 

(or, if goals function has not a gradient, on pseudo-gradient) 

calculation and analysis, are developed.  Nevertheless for 

many real tasks the Goal Function isn’t convex, but has many 

Local Minimums.  In these cases such approaches require to 

know initial point of search, which has to be not far from 

optimal solution.  In such optimization algorithms the initial 

guesses for the parameters are very crucial.  Moreover, not 

enough, if any, information is often available to define this 

initial point and then it is impossible to apply regular 

(gradients-based) methods. 

The Cross-Entropy Optimization [3], one of RANDOM 

SEARCH-oriented methods, is proposed in this paper for the 

Global Optimization Task. It is relatively new random search-

oriented approach (in comparison with Genetic Algorithm, 

implemented as Toolbox in Matlab, or Simulated Annealing 

Algorithm), but it has provided very good results for several 

analogous tasks. 

4 SHORT DESCRIPTION OF CROSS-ENTROPY 

ALGORITHM 

The method’s name derives from the cross-entropy (or 

Kullback-Leibler), well known measure of "information", 

which has been successfully employed in diverse fields of 

engineering and science, and in particular in neural 

computation, for about half a century.  Initially the Cross-

Entropy method was developed for discrete optimization [3], 

but later was successfully extended for continuous 

optimization [4]. The Cross-Entropy method is an iterative 

method, which involves two following phases [3]:  

1. Generation of a sample of random data.  Size of this 

data is 500…5000 random vectors of each algorithm steps, 

amount of steps is 50…100. Generation is performed 

according to the specified random mechanism. 

2. Updating the parameters of the random mechanism, on 

the basis of the data, in order to produce a 'better" sample in 

the next iteration.  Choice of these parameters is performed by 

means of maximization of Cross-Entropy function.  This 

optimization is performed on the each algorithm step, but 

unlike global optimization, this optimization is performed 

VERY EASY and FAST, because of convexity of Cross-

Entropy function. 

The first phase is the generation of Z1 …ZV …ZN sample, 

which has size of N different parameter sets.  This generation 

is performed according common Probability Density Function 

F(Z) for parameter vector Z, which has been calculated on the 

previously step of the algorithm. 

The value of Goal Function is calculated for each v from 

N (v = 1…N) generated parameter vectors.  Then best NEL 

(NEL = 10…50) parameter vectors Z from all N generated are 

selected – it is named ELITE part from full sample.  This 

selection is performed according to the Goal Function values, 

i.e. parameter vector with number 1 will have minimum value 

of Goal Function, parameter vector with number 2 will have 

second value of Goal Function, and parameter vector with 

number NEL will have NEL ordered value of Goal Function.  

Next the algorithm calculates new values of the 

Probability Density Function F(Z) – it is second phase of each 

algorithm step.  

 The aim of the new function F(Z) is to maximize Cross-

Entropy Function.  On the general case the Cross-Entropy 

Function is following: 
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which is the Kullback-Leibler probability measure of distance 

between different Probability Density Functions (PDF), where 

ZV is the value of the generated parameter vector on the v-th 

set of Elite part of current sample.  

So, first a type of PDF has to be selected to generate 

random parameter vectors Z.  For continuous optimization the 

following types of PDF can be used: 

Beta PDF, 

Normal PDF,  

Double-Exponential PDF, 

etc. 

Using of Normal PDF F(Z) is advantageous, since in 

contrast to Beta and Double-Exponential PDFs the Normal 

PDF allows analytical solution of above task.  Other types of 

PDF involve numerical solution.  It is known following 

analytical solution for Normal PDF parameters (with respect 

to Mean and Covariance Matrix) of function F(Z): 
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The too earliest occurrences of the PDF parameter should be 

prevented, because in this case optimization is stopped non-

correct (PDF will be simply Dirak function!).  For this aim, 

instead of simple choice by means of independent current step 

result analysis, the smoothed updating procedure can be used: 

Mean[j](t) = α Meanprel  [j](t) + (1 - α)Mean[j](t-1), 

where: 

Meanprel [j](t) – preliminary value of Mean[j], obtained on 

current step t, i.e. before smoothed updating, 



Mean[j](t) – final value of Mean[j], obtained on current step t, 

i.e. after smoothed updating, 

Mean[j] (t-1) – final value of Mean[j], obtained on previously 

step (t-1), 

α – smoothing parameter for Mean updating, 

t – step number 

Cov[i, j](t) = ζ(t)Covprel [i, j](t) + (1 – ζ(t))Cov[i, j](t - 1),  

ζ(t) = ζ – ζ( (1 – 1/t)
γ
, 

where: 

Covprel [i, j](t) – preliminary value of Covariance[i, j], 

obtained on current step t, i.e. before smoothed updating, 

Cov[i, j](t) – final value of Covariance[i, j], obtained on 

current step t, i.e. after smoothed updating, 

Cov[i, j](t-1) – final value of Covariance[i, j], obtained on 

previously step (t-1), 

 ζ and γ – smoothing parameters for Covariance updating. 

As one can see, for the PDF parameter Mean the fixed 

smoothing parameter α is used, and for the PDF parameter 

Covariance the dynamic (dependent of step number) 

smoothing parameter ζ(t) is used [4]. 

5 SOME EXTENSIONS 

5.1 Multiple Systems 

In this case the input statistics of failures and repairs will 

be as following: TF[j, 1], TR[j, 1],…, TF[j, i], TR[j, i],…, 

TF[j, n], TR[j, n], where 

k is amount of systems, 

n(j) is amount of failures/repairs on system j, 

TF[j, i] is time of failure number i on system number j, 

TR[j, i] is time of finishing of repair number i on system 

number j, i = 1…n(j), j = 1…k. 

To define λf and βf, the following Goal Function should 

be minimized: 
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where Pf [j, i] - Conditional PDF, that i-th failure will be at the 

moment TF[j, i] on condition, that (i -1)-th repair has been 

finished at moment TR[j, (i -1)].  For these conditional PDF-s 

the expression (1) is applicable without some modifications, it 

is only required to use TF[j,i] instead of TF[i] and TR[j, i] 

instead of TR[i].  Cross-Entropy Optimization algorithm to 

search for parameters λf and βf also will be exactly same, as in 

single system case.  

For definition of λr and βr all expressions will be 

analogous. 

5.2 How to take into account End Time and Start Time 

Formula (1) assumes that system starts operating at time 

0, and last measurement corresponds for last failure.  

If for some single system j the non-zero start time TS[j] is 

used, the expression for Pf [j, i] has to be modified for i = 1:  

use TR[j, 0] = TS[j] instead of 0 (see comment under formula 

(1) ). 

If for some single system j additional end (censored) time 

TE[j] is used, the additional expression Pf [j, i] should be used 

for i = n(j) + 1 :                              

[ ] [ ] [ ]( )( )ff )j(n,jTRjTEexp1)j(n,jP ff
ββ −λ−=+ , 

and for this j to use additional component Pf [j, n(j)+1] on 

expression (5).     

              

5.3 Definition of un-known parameters δf and δr 

 

Sometimes initial moments (initializations) of failure rate 

and repair rate are not zeros (don't confuse with start times of 

single systems!).  Suppose, they are δf for failure rate and δr 

for repair rate.  In this case (t – δr) and (t – δf) have to be used 

in all formulas of NHPP process instead of t.  Expression (1) 

should be modified too: instead of TF[i] and TR[i] to use 

(TF[i] – δf) and (TR[i] – δf), to modify expression (3):   

instead of TF[i] and TR[i] to use (TF[i] – δr) and (TR[i] – δr).  

If values of parameters δf and/or δr are unknown, they can 

be found by means of minimization of Negative 

LogLikelihood – not only for parameters β and λ, but also for 

parameter δ.  To search for value of parameter δ, Cross-

Entropy Optimization algorithm can be applied to modified 

expressions (2) and (4) (for single system) or expression (5) 

(for multiple systems).  

It is necessary to note, that MLE approach gets solution 

for optimization of three parameters only for case β>1 (widely 

known fact for Weibull three parameter estimation). So, for 

situation when β<1 some other method should be used, e.g.: 

 

• To use some non-parametric estimation method (for 

example, well known MCF approach of Nelson [5]) and 

based of received results to use Least Squares 

optimization for three parameters (β, λ, δ).  Least Squares 

non-linear optimization will be performed by means of 

Cross-Entropy method. 

 

• Based on above estimated value of parameter δ it is 

possible to improve the estimation of β and λ by means of 

MLE optimization using expressions (2) or (4). 

6 OUTPUT ESTIMATIONS 

Based on obtained parameters one can get some 

estimation and perform numerical analysis.  

For instantaneous values of MTTF and MTTR the 

following expressions are used: 
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For cumulative values of MTBF and MTTR one can use the 

following: 
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It is impossible to obtain analytically the exact expression for 

instantaneous value of the Inherent Availability depending on 

time, but approximately one can assume, that  
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If δf = δr = δ (for default δf = δr =0) one can simplify last 

expression: 
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For cumulative (or mean) value of Availability the formula 

can be applied 
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It is impossible to obtain analytically the exact expression for 

cumulative value of Availability depending on time, but 

approximately one can assume, that  
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If δf = δr = δ, than last expression can be simplified : 
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It is evident, that if βf < βr, the Instantaneous and Cumulative 

values of Availability are increased in time (i.e. see 

Availability Growth), although MTTFi(t) and MTTFc(t) will 

decrease. Otherwise, if βf > βr, the Instantaneous and 

Cumulative values of Availability are decreased depending on 

time (i.e. see Availability Aging), although MTTFi(t) and 

MTTFc(t) can increased. 

 

CONCLUSION 

It is important to recognize, that the Availability aspect 

should be integrated into general process of a repairable 

System improvement and maturity progress evaluation, 

consecutively complementing and expanding the commonly 

used Reliability Growth procedure. The above described 

methodology has been developed to introduce and put into 

practice the Inherent Availability Growth process, derived 

from the failure and repair rate estimations, based on Entropy 

Global Optimization algorithm applied to the MLE function.  
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