
Advanced Models for Software Reliability Prediction 

Zigmund Bluvband, PhD, ALD ltd. 

Sergey Porotsky,  PhD, ALD Software ltd. 

Michael Talmor , M.Sc., RAFAEL Ltd. 

Key Words: software reliability, analytical models, cross-entropy 

SUMMARY 

This article describes the advanced parametric models for 

assessment and prediction of software reliability, based on 

statistics of bugs at the initial stage of testing. The parametric 

model approach, commonly associated with reliability issues, 

deals with the evaluation of the amount of bugs in the code. 

Computed parameter values inserted into the model allow to 

estimate: 

 (a) number of bugs remaining in the product, and   

 (b) time required to detect the remaining bugs. 

Many models are developed for similar purpose: Duane 

Reliability Growth Model, Goel Model, Weibull Model, 

Classical S-shaped Model, Ohba S-shaped Model, etc. Taking 

into account some detailed, but practical, aspects of the 

software testing process, a few Advanced Models were 

developed and usefully implemented by the authors.  The 

proposed models are sensitive to the situations typical for the 

early stages of Software development. As a result, one deals 

with the essentially non-linear, multimodal goal function to 

define the optimal value as the estimation of the unknown 

control parameter.  To support the optimization of such 

complex models, the Cross-Entropy Global Optimization 

Method is proposed. Some authentic numerical examples are 

considered to demonstrate the efficiency of the proposed 

models. 

1 INTRODUCTION  

One of the main questions in the Reliability Software 

Analysis and Test Planning is: “When will the Software 

product be ready for release?” The answer to this question 

comes from the Quantitative Analysis, based on applicable 

parametric models.  

In the Software Reliability analysis the following time-

series are used: 

• "Cumulative Effort of testers from start of testing" (CE), 

as an input indicator  

• "Cumulative Amount of Bugs" (CB), as an output one 

From the bugs’ trend perspective, our model applies a 

nonlinear approximation for the cumulative data under 

analysis to estimate the number of bugs remaining in the 

product, and the time required to detect the remaining bugs. 

.  

2 CUMULATIVE EFFORT AS MAIN INPUT INDICATOR 

Number of days from start of testing is typically used as 

an Input parameter in Software Reliability analysis. 

Application of this parameter is reasonable, when one assumes 

that amount of testers and their effort approximately don't 

change during the testing process. In this paper it is proposed 

to use the "Cumulative Effort of testers from start of testing” 

(person*days) instead of "Number of days". Nevertheless the 

standard worksheet reports don’t contain the detailed required 

information: how long every tester worked for the particular 

project during his working day (week). In that case it is not 

known whether the software has been tested by the tester or 

the bugs have not been detected during the test. 

That’s why the following Control Parameter is proposed: 

• TP (Time Pause) - Significant Value of Non-Working 

Time 

The assumption is: if a tester during a Time period longer than 

TP didn't insert records on bugs found, then he/she didn't work 

on a given project during this Time period.  

Assume, that TP = 7 days. If single tester hasn’t record 

bugs during period of 5 days, we will take into account his 

effort (5 person*day) for Cumulative Effort calculation. 

Therefore, we suppose that the tester has really worked on this 

project without recording bugs each day, but once a week (it is 

typical situation of real statistics!). Nevertheless, if there are 

no bug records during two weeks (more than TP selected 

value = 7 days), we will assume, that he/she hasn’t work on 

this project these two weeks.  

Certainly, this assumption is an integrated rough 

approximation over a group of testers, i.e. it is recommended 

to determine the TP value for the entire software project.  

Using this approach, one can estimate the Cumulative 

Effort for each single tester and then to get the general 

Cumulative Effort for the entire project. 

Value of TP essentially influences for the "Cumulative 

Effort" depending on "Quantity of testing days".  For example, 

we will get the following curves (see Fig. 1): 

• ______    for TP = 7 days 

• - - - - - -   for TP = 14 days  

• ………   for TP = 28 days  

• _._._._. without defining and using the TP (TP = infinite) 



 
Cumulative Effort (person*day) 

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

 
Quantity of testing days 

Figure 1. The comparison of CE curves for different TP values 

 

For each single project study it is recommended to select 

the Optimal Value of TP (as well as all other control 

parameters) by means of the least-squares method – to 

minimize the difference between the cumulative bug 

distribution curves (analytical and the statistical).  

3 PARAMETRIC MODELS FOR BUG AMOUNT 

PREDICTION 

Many models are developed for Bug Amount Prediction: 

Duane Reliability Growth Model (that assumes infinite 

amount of failures that can occur in infinite time), Goel 

Model, Weibull Model, Classical S-shaped Model, Ohba S-

shaped Model (that assume finite amount of failures, which 

can occur in infinite time), etc [1]. In the multiple projects the 

authors worked on, the modified Ohba S-shaped model was 

the most suitable for Software Reliability estimation: 

( )
( )CEbexpC1

CEbexp1
NCB

∗−∗+

∗−−
∗=

  (1) 

Where: 

• N is the expected total amount of bugs to be eventually 

detected; 

• CB – amount of the Cumulative Bugs; 

• CE –amount of the Cumulative Effort; 

• N, b, C - unknown control parameters.  

This model is much more flexible one, but it does not take 

into account some specific features of Software Testing 

Process: 

• Rate of bugs’ discovery sometimes essentially depends on 

tester familiarity with the project – i.e. generally 

speaking, the more the tester experience is in this project, 

the higher the rate of bugs’ discovery is.  

• Rate of bugs’ discovery sometimes essentially depends on 

the CE rate of the tester – generally, the bigger the CE 

Rate is, the higher the rate of bugs’ discovery is.  

To take into account some detailed aspects of the software 

testing process, authors have developed following Advanced 

Model: 

( )
( )CEMbexpC1

CEMbexp1
NCB

∗−∗+

∗−−
∗=

  (2) 

Where for the time-series index i: 

CEM(i+1) = CEM(i) + ∆ CEM(i)  (3) 

∆ CEM(i) = ∆ CE(i)*(CE(i)
f
 )*(Mean_Derive(i)

p
), (4) 

∆ CE(i) = CE(i+1) – CE(i),  

• p and f are additional unknown control parameters, 

• CEM is a Modified Cumulative Effort, 

  (5) 



Mean _ Derive(i) is the Mean Value of the CE derivative:  

M

)1ji(CE_Derive

)i(Derive_Mean

M

1j

∑
=

+−

=  (6) 

Where: 

• M = interval of averaging of Derivative of CE (it is 

also control parameter) 

)1k(t)k(t

)1k(CE)k(CE
)k(CE_Derive

−−

−−
=  (7) 

• t(k) – day number at the time-series at index k. 

 

To evaluate model parameters based on input statistics, one 

can use the different methods: 

• Maximum Likelihood Estimation (MLE), based on 

Probability Density Function  

• Least Squares Method, based on Cumulative Density 

Function  

• Method of moments 

• Etc. 

In our case we don't use suspensions (censored times), so 

it is possible to use Least Squares method. We have to select 

values of our control parameters by means of minimization of 

the sum of Least Squares of measured and calculated values of 

CB. 

4 PARAMETRIC MODELS FOR BUG RATE LOW VALUES 

PREDICTION 

The described approach is applicable only for non-rare 

bugs. But Software standards dictate strict requirements to the 

software safety within the system application. For example, 

the corresponding claim limit for SIL 3 (Safety Integrity 

Level) in IEC61508 [2] is defined as 10
-6

 failures (bugs) per 

hour.  

For systems with so high requirements for software 

reliability we could not support rest of the bug amount, as in 

the above model. It is rather necessary to ensure that in the 

field the Bug Rate will be less than some pre-defined value. 

For example, for the above SIL 3 requirement, one should 

finish the test at the rate equal or less 10
-6

 *K,  

Where K is the test-to-field bug rate ratio (K ≈ 30-50). 

Therefore, in the case of K = 50, the end-of-test bug rate 

requirement will be about 10
-6

 *50 = 5*10
-5

.  

Is it possible to check and define this end-of-test time 

point manually, by means of direct calculation of bug rate 

based on measurement data? Unfortunately, the answer is – 

NO.  

But for the question: Is it possible to check and define the 

end-of-test time by means of calculation/prediction of bug rate 

based on some software reliability analytical models? The 

answer will be, in most cases, - YES.  

To illustrate this fact, consider following example. 

Suppose, that group of 4 - 8 testers, working 6 - 10 hours per 

day, discover 20 critical bugs, i.e. bugs of urgent severity 

during 3 months. Question – is it tested enough time or one 

should continue to test and find bugs of urgent severity? 

Suppose, we have following statistics about discovered bugs 

of urgent severity type (see Table 1 and Figure 2 below). Last 

row (Suspended/censored time) corresponds to the last test 

period without failure.  

It is very difficult to estimate current Bug Rate, based 

only on measurements. For example, on the base of 5 last 

rows, one can get the Rate ≈ 4/(5400 – 1481) = 0.001 

bugs/hour, which is very far from the required value of  5*10
-5

 

bugs/hour.  
To evaluate Bug Rate, we will use parametric models. 

Consider, for example, the Goel model: 

CB = N*(1-exp(-b*CE)) ,  

Rate = N*b exp(-b*CE)  (8) 

Where: 

• CE is Cumulative Effort (input parameter, i.e. variable) 

• CB is Cumulative Amount of Bugs, 

• Rate is Bug Rate 

• N is the expected total amount of bugs to be eventually 

detected 

• N and b are unknown control parameters.  

In our case we essentially use suspensions (last row of the 

Table 1), so one should use MLE method.  



Table 1. Cumulative Bug and Cumulative Effort Values 

Cumulative 

Bug (CB) 

Number of 

working day 

Cumulative Effort 

(CE) from  testing 

start, person*hours 

1 1 1  

2  2 60  

3  2 87  

4  4 168  

5  6 258  

6  7 269  

7  8 309  

8  9 423  

9  10 474  

10  10 505  

Cumulative 

Bug (CB) 

Number of 

working day 

Cumulative Effort 

(CE) from  testing 

start, person*hours 

11  13 600  

12  16 731  

13  17 808  

14  20 927  

15  21 1017  

16  24 1173  

17  30 1481  

18  44 1906  

19  44 1918  

20 59 3063 

S (no bug) 100 5400 

 
Cumulative Bug 

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

16

18

20

 
Cumulative Effort (person*hours) 

Figure 2. Amount of Cumulative Bugs Vers Cumulative Effort 

  
By means of MLE, one can obtain the following values of 

model parameters:  

N = 20.03, b = 0.00123. 

Basing on these values, one can calculate Bug Rate for CE = 

5400. The calculated value is 3*10
-5

, so it is possible to stop 

the testing.  

These models can be used not only for current situation 

analysis (is Software ready for release?), but also for the 

prediction. If the answer for the question ”is Software ready 

for release?” is currently negative, it is necessary to predict the 

expected time of end-of-testing - to satisfy the required value 

of the "Bug Rate" in the field: and to ask "When will Software 

be ready for release?" 

Suppose, that last row (Suspense/Sensor Time) has value 

3200 (instead of early used 5400).  



20 59 3063 

S (no bug) 65 3200 

 

By means of MLE solving, one can obtain the following: 

 N = 20.6, b = 0.0011 

Basing on these values, one can calculate Bug Rate for 

CE = 3200. Calculated value of the Bug Rate is 0.0007, which 

is not enough to stop testing.  

How to predict, when the test can be stopped? 

Given there will not be bugs detected in the farther test 

continuation, the simplest approach typically leads to use of 

the above obtained parameters (N = 20.6, b = 0.0011) and to 

find appropriate value of CE, at the point where the 

corresponding Bug Rate will be less than 5*10
-5

.  

Unfortunately, this approach isn't correct, because the 

above obtained N and b values correspond to the old value of 

suspended (last not-failure) time. 

In this case it is necessary to calculate the new appropriate 

values of N and b – for each assumed end-of-test’s CE. 

So, one rather should find new values of parameters N 

and b, especially for the current value of suspended CE.  

For that purpose additional control parameter CE_Critical 

is introduced, and then the following (a little more complex) 

task should be solved: 

To find {CE_Critical, b, N} s.t. Rate = 5*10
-5

, where 

Rate = N*b*exp(-b*CE) and parameters’ values b, N are 

maximizing the MLE function of above table with un-known 

value  of CE_Critical instead of last row.  

This is 3-parametric non-linear optimization task and after 

its solution one can get the following values: 

CE_Critical = 4880, b = 0.00122, N = 20.05,  

Rate = 5*10
-5

    

So, the testing should be continued until the CE will reach the 

value of 4880 person*day  (if, certainly, until this moment 

new bug will not be detected - in this case it is necessary to re-

calculate the model parameters).  

5 GLOBAL OPTIMIZATION APPROACH 

After the model type building it is essential to define 

values of un-known (control) model parameters. Global 

Optimization of non-linear function is a common approach for 

such problems. For example, concerning problem of 

Parameters Estimation, a Linear Regression model can support 

only a few cases (e.g., Duane Model). In non-linear regression 

case, one has to search parameters by means of non-linear 

multi-modal and non-convex, global optimization. In this case 

the task is to get the value of Z, which provides min G(Z) 

under constraints Low[i] <= z[i] <= High[i], i = 1…K,  

where: 

 

• Z = {z[1],…,z[i],…z[K]} is a vector of parameters 

• K is amount of parameters 

• Low[i] is Low Boundary of Parameter i value (i = 1…K) 

• High[i] is High Boundary of Parameter i value (i = 1…K) 

G is some Goal Function depended on vector Z (in this case it 

is sum-of-difference-squared between the model-generated 

cumulative bug distribution curve to the actual cumulative bug 

distribution curve – see chapter 3; MLE function – see chapter 

4).  

 

To solve this task, two different approaches can be used: 

• Write and transform derivatives of Goal Function for each 

single situation, to solve system of non-linear equations, 

according to situations, to compare different obtained 

solutions, etc. 

• Use "direct search methods", provided universal search of 

Global Minimum (without analytical definition of 

derivatives). 

For the first approach one should define complex analytical 

expressions for derivatives for each single situation.  

It is proposed to use the second (universal) approach. 

For Global Optimization Task one should use some 

Random Search oriented method – Cross-Entropy 

Optimization [3]. The method derives its name from the cross-

entropy (Kullback-Leibler) distance - a well known measure 

of "information", which has been successfully applied in 

diverse fields of engineering and science. Initially the Cross-

Entropy method was developed for discrete optimization, but 

later was successfully extended for continuous optimization 

[4]. 

6 CONCLUSION 

This paper presents two advanced analytical models for 

obtaining accurate results for software reliability prediction. 

First model takes into account some specific features of 

software testing process and it is based on well-known S-

shaped Ohba model. However this advanced model is 

applicable only for non-rare bug testing. For the rare bug rate 

prediction other model is proposed, based on introduction of 

the additional control parameter - “last suspended time”. 

These two models essentially use control parameters and 

so there is a need for optimization – Least Squares for the first 

model and MLE for the second model. Cross-Entropy Global 

Optimization method has been used and so it is recommended 

both for the first and the second models.   

REFERENCES 

1. M. R. Lyu, Handbook of Software Reliability 

Engineering. McGraw-Hill, 1996 

2. 61508 - Functional Safety of Electrical / Electronic / 

Programmable Electronic Safety-Related Systems, 

International Electrotechnical Commission (IEC), 1999 

3. R. Y. Rubinstein and D. P. Kroese. "The Cross-Entropy 

Method: A unified approach to Combinatorial 

Optimization, Monte Carlo Simulation and Machine 

Learning". Springer-Verlag, 2004 

4. D. P. Kroese, S. Porotsky and R. Y. Rubinstein. "The 

Cross-Entropy Method for Continuous Multi-Extremal 

Optimization".  Methodology and Computing in Applied 

Probability, 2006, 8(3) : 383–407.  

 



BIOGRAPHIES 

Zigmund Bluvband, Ph.D. 

A.L.D. Ltd. 

52 Menachem Begin Road 

Tel-Aviv, Israel 67137 

e-mail: zigmund@ald.co.il  

Zigmund Bluvband is the President of Advanced Logistics 
Developments Ltd. His PhD (1974) is in Technical Sciences. He is a 
Fellow of ASQ and ASQ–Certified Reliability Engineer, Quality 
Engineer, Quality Manager and Certified Six Sigma Black Belt. Z. 
Bluvband has accrued more than 30 years of industrial and academic 
experience. Z. Bluvband was the President of the Israel Society for 
Quality (1989 – 1994). He has published more than 70 papers and 
tutorials, ten patents and four books. In 2006 Dr. Zigmund Bluvband 
has been honored with the IEEE Reliability Society Lifetime 
Achievement Award. In 2009 Dr. Z. Bluvband was elected as an IAQ 
(International Academy for Quality) Academician. 

Sergey Porotsky, Ph.D 

ALD Software Ltd. 

52 Manachem Begin Road,  

Tel-Aviv, Israel 67137.  

e-mail:  sergey.porotsky@ald.co.il 

Sergey Porotsky is a Chief Scientist of ALD Software Ltd. He is an 
expert in analytical and numerical methods of Applied Mathematics. 
Dr. Porotsky is involved in design and optimization algorithms for 
reliability analysis of complex systems - Monte Carlo, Markov 
Chains, FTA methods. While with Moscow Scientific and Research 
Center of Computers, he developed analytical methods for Computer 
Systems and Networks Evaluation. His PhD is in Computer Science 
(1985) and his Dr. Sc. degree is in Operation Research (1992). 

Michael Talmor , M.Sc. 

Head of the Reliability Center, RAFAEL Ltd. 

14A Savion St., Quriat Yam, 29500, Israel   

e-mail:   michaelt@rafael.co.il   

Michael Talmor is a Head of the Reliability Center in RAFAEL Ltd.  
He holds MsC degrees in Electrical and Reliability Engineering. 
Since coming to RAFAEL he focused his efforts in Quality and 
Reliability of the Systems. His work includes Reliability and 
Availability modeling and analyses, Reliability testing and 
demonstration, Bayesian approach in reliability estimation, 
microelectronic reliability, Safety analyses, software reliability and 
safety, etc. He   published several articles in different areas of his, 
more than 25 years, activity.  

 


