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Abstract

Procedures and tools of Statistical Process
Control (SPC) can increase product yield in the
semiconductor industry. However, conventional
SPC techniques do not fit the unique processes of
the  semiconductor industry. A.LD. - has
developed a customized, advanced SPC
methodology for™ wafer fabrication process
control, and has successfully implemented it in
several fab areas. The scope of the methodology
includes data collection and treatment as well as
analysis interpretation, and decision making. The
concept focuses on data variability as a basis for
analysis of a process’s current performarce.
Furthermore, the total process variation is



decomposed into its underlying components. The
methodology’s  strongest  outcomes  are:
1) reduction of the number of wafers for data
collection during the process/product design
stages; 2)evaluation of relationship between
yield and ETs (Electrical Testing results);
3) corrected procedures of GR&R study; 4) 3-
level  (Sites-Wafers-Lots) ‘semicharting’
technique; 5) low-p (proportion of defectives)
charts; 6) ‘pure’ capability study and computation
of relevant capability/performance indices; 7) the
knowledge-based process imiprovement strategy
of reactive and proactive activities.

Introduction

Modem concepts of  effective  process
management necessitate advanced Quality
Management and Statistical Quality Control
(SQC). This paper is primarily focused on one
subfamily of SQC—SPC, which pertains to in-
process activities. Other SQC methods
representing the pre- and post-process activities
are beyond the scope of this paper. Nevertheless,
those aspects of DOE, Sampling and Final
Inspection which are closely connected to SPC
will be tangentially mentioned.

Application of “canned” SPC schemes and
methodologies has demonstrated that some SPC
techniques are not appropriate to the
semiconductor manufacturing uniquely complex
processes. The reasons for this are as follows:
1. Numerous two-type design rules (geometric
and electric) require application of multlva.nate
analysis.

2. Highly restricted amount of data at
development stages, and many similar data from
production, result in high uncertainty of any
statistical inferences based on these data.

3. Imsufficient resolution and relatively low
precision of measurement/test systems, as well as
their periodic faults, result in noisy databases and
many outliers.

4. High fab flexibility and frequent process
changeovers due to short product lifetime require
universal solutions at the technology level.

This paper presents a proven effective SPC
methodology customized to the wafer fabrication

process. Development of an' appropriate SPC
technique for the pursuit of an ‘increasing yield’

policy in the semiconductor industry was our
main goal. The methodology includes advanced
methods for data processing, analysis,
interpretation, evaluation and decision making.
Some techniques presented here are described in
detail; others are just mentioned due to. the
limited space.

This paper is primarily mtended for practitioners
who are responsible for improving quality and
increasing productivity. Therefore, we  have
avoided overusing dull statistics and féxmulas
and illustrations in the visuals attached to this
tutorial. Due to the proprietary pature of the data,
neither names nor values of some analyzed
electrical parameters and critical dimensions can

be disclosed.

Data Collection and Processing

Data Collection—Statistical methods can be very
effective for process improvement, provided that
the information underlying all statistical
inferences is valid, reliable and timely. It is rarely
possible fo test an entire population due to high
costs or destructive testing methods. Therefore, a
sample is used to make an inference about the
population. The results of this inductive analysis
depend on the degree to which the sample
represents the entire population. A fundamental
approach to correct sampling for SPC was
developed by Shewhart (Shewhart, 1931) known
as the rational subgroup concept. This concept is
based on two main principles:

Principle 1. Sample units (subgroups) should be
selected so as to yield minimum within-sample
variation in order to evaluate inherent process
variation due to common causes. This means that
the time required to select subgroups should be
short enough to maintain homogeneous
production conditions (no changing tools, no
machine adjustments, no operators changes, no
material lot changes, etc.).

Principle 2. Sampling frequency should be high
enough to provide a maximum chance of
capturing between-sample variation due to



assignable causes. However, as the frequency of
sampling rises, so do the associated costs - often
making frequent sampling unfeasible. An optimal
sampling frequency should be related to - the
production rate and rate of occurrence of various
types of process shifts. OPTIMAL FREQUENCY
SHOULD ALSO ACCOUNT FOR COSTS!

A good empirical ‘rule of thumb® for determining
sampling frequency is dividing the average time
period between two subsequent Pprocess
adjustments by 5-6 for rather well-known
processes, and by 10-12 for almost unknown
processes. If much greater protection against
continling an out-of-control process is required,
the denominator could be increased to 20-24.
This is important when there are significant
losses associated with a Typell .error, and a
process may continue out of control until the next
sampling.

We propose supplementing Shewhart’s principles
with one of our own:

Principle 3. Time is not always an optimal basis
for determining sampling frequency. If prior
processing has a significant influence on present
production results, the frequency should be
measured not in units of time but in the Dumber
of items produced between consecutive samples.
The choice of the appropriate units of sampling
frequency is especially important for fabs
wherein a pollution depends on the number of
produced wafers. The resulting optimal sampling
frequency measured in wafers can help calculate
the minimal number of wafers necessary to be
produced in order to keep the ‘sleeping’
technology in the standby state.

Process Distribution dnalysis—The next step in .

the analysis is processing and analyzing the data.
Some descriptive statistics are derived from the
sample data. Since there are three basic properties
characterizing any distribution—location, spread
and shape—analysis usually focuses on measures
associated with these properties. _

One of the most serious problems associated with
real data is that they usually contain outliers. This
is especially true for transistor leakage, drive
currents, threshold voltages, and other
phenomena measured on a test sfructure. Due to
the high sensitivity of perametric statistics to

‘extreme values, our inferences could be erroneous

without preliminary ‘purification’ of raw data.
Purification could bé performed, for example,
using a priori knowledge of the involved
processes  and their parameter  ranges.
Measurement is classified as acceptable if it is
within known range limits. Unfortunately, due to
the absence of ‘hard’ @ priori knowledge, -this
approach is rarely applicable in real-world
situations. A

Usually, the practitioner must use intuition to
perform some rough purification before data
analysis. This could involve a trimmed statistics
calculation, wherein some of the ordered
observations in a sample are considered outliers
and therefore are trimmed from each end (why?).
Another technique is the Q-Q plot in which the
empirical quantiles are plotted versus the
corresponding normal  quantiles, implicitly
supposing the underlying distribution is normal
(why?); points deviating from a linear pattern on
a plot are outliers. There are many other mtuitive
techniques. As a tule, these simple methods are

' characterized by significant errors of both Type I

and 11, especially for large sets of data.

There are other more sophisticated and much
more effective statistical procedures for outlier
detection, but they are not used to any extent
because they are not particularly well known to
practitioners. We recommend Grubbs’ test for the

univariate case, and Jackknife distance and cross-

validation for the multivariate case. In the
Grubbs’ test, the distances of largest and smallest
values from the sample mean measured in sample
standard deviation units are compared with some
critical values. The Jackknife test calculates the
distance of each point from the multivariate mean
(centroid), with subsequent comparison of the
largest values with some upper limit. Cross-
validation employs @ priori knowledge of strong
cross-comrelations between some measurable
characteristics—if an extreme rise or fall in the
value of one characteristic is associated with a
corresponding rise of fall of the others.

Suppose the data have been checked for outliers,

_ refined, and some statistics of interest have been

calculated. The next step is to draw conclusions
about the population’s parameters. Validity of the



 transition from statistics to parameter estimates
could be significantly improved wusing the
bootstrap method (Efron, 1981). Bootstrap is an
extremely powerful simulation technique
whereby raw data are treated as if they constitute
the population under study. By replicating those
data an infinite number of times, a large number
of*samples (each the same size as the original
one) could be drawn at random from that
population. For every bootstrap sample, a
statistical estimator of interest is computed. This
repeated resampling eventually generates an
empirical sampling distribution of sample mean

or variance or other estimator of location, spread

and shape. The main advantage of bootstrapping
is that the distribution could be empirically
reconstructed based on the original data
characteristics without any a priori assumptions
about the distribution.

We have successfully applied bootstrappmg to
both the early stages of new technology
development and process improvement effort
verification when due to cost/time constraints
small sets of data are used for predicting expected
results. The procedure’s convergence has been
evaluated using 532 wafers each tested at 5 sites
(some electrical parameter). Subsequent random
sampling with increasing size from sample to
sample has shown that this population’s central
tendency can be estimated using 2-3 wafers, and
the spread can be estimated using 7-8 wafers,
both at the 95% confidence level.

The final stage of any distribution analysis is a
comparison of parameter estimate with its desired
value. The rules can be defined as follows: ‘the
Nominal - the Best’ for central tendency; ‘the
Smaller -.the Better’ for spread; ‘In accordance
with Specification’ for shape (peakedness,
symmetry, etc.).

Correlation & Regression Analysis of ‘Yield-ETs’
Relationship—Until now the discussion has
focused on distribution analysis, and has
presented various enumerative studies the
purpose of which is to determine a process’s
current state. However, the primary objective of
any statistical analysis is' usually process
improvement. This can be achieved, for example,
by using correlation and regression analysis,

which is an analytic method focused on
determining cause-effect relationships related to
process performance. We’ll present our approach
to this analysis considering one of most serioneg
problems of wafer fabrication process: yield
prediction using Electrical Testing (ET) results.
Since the exact equation relating a chip’s
electrical parameters to the output of the process
(God’s Equation) is not known, both the yield
prediction and determination of optimal
parameter values can be done only by studying
past performance, i.e., analyzing the Yield-ET
relationship. Experience has shown that any
direct- attack or straightforward analysis of the
Yicld-ET’s database is doomed to failure due to
considerable obstacles.

A.L.D. has developed. a proven strategy of root
cause search (Fig.1). First, it is necessary to
eliminate the yield failure data due to different
yield killers. This is because such data do not
relate to degradation, and only characterize
‘catastrophic’ process failures. Second, we
contend with errors arising in all measurements
using the above methods. of data ‘purification.’
Next, engineering expertise is required for
reasonable database reduction, because hundreds
of tested parameters are involved. The database
should include families of critical parameters that
are potentially responsible for process yield (VIA,
contact chains, transistors, capacitors, etc.). At
least one key parameter of each ET structure
should be kept for further analysis. The correct
choice of possible yieldrelated predictors
requires extensive engineering knowledge, and
could be supported by cross-correlation analysis
of ET data. '
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Figure 1. Yield Prediction Using ET’s Results

Further database ‘purification’ requires the
- separation and suppression of ‘information
noise.” Any process with normal bebavior
generates random yield variation representing
information noise not related to yield
degradation, and should be separated using
control chart techniques. The data characterizing
yield variations within control limits (inherent
process variability) on a p-chart are dropped from
‘the database. The remaining points above the
upper control limit on the chart constitute ‘pure’
data for analysis performance. The last stage of
data processing involves grouping poor wafers
coming from the same lot and ignoring individual
poor wafers having no counterparts in the
‘mother’ lot. This procedure results in data
‘smoothing,” and eliminates the ‘necessity of
describing every salient point by constructing a
yield model. '

Experience has shown that the resulting database
could be readily analyzed using common
techniques of multiple linear regression. More
complicated models with second-order terms and
two-way interactions between parameters have
not resulted in any significant advantages.

This procedure’s  efficiency has  been
demonstrated over and over again for different
technologies, and has isolated the critical
parameters responsible for process yield. As a
rule, the coefficient of determination for
constructed two-term or three-termn models was
rather high (0.5-0.8).

Measurement System Analysis

Since measurement systems are used in SPC for
making decisions about processes, a conclusion
" about these systems themselves is necessary. The
Gage Repeatability and Reproducibility (GR&R)
study is used to estimate the ability of a system to
produce precise results. The study is performed
by making repeated measurements on the same
measurand. The result is evaluated for both
" repeatability, characterizing variation under
identical conditions of measurement (variation
due to the gage itself), and reproducibility,

characterizing variation under changed conditions

of measurement (variation due to operator, time,” *

reloading, reset, environment etc.).

We’ll present cur appreach to GR&R as applied
to the precision of Scanning Electron
Microscopes (SEM) used for measuring Critical
Dimensions (CD). The main CD-SEM metrology
problems stem from the fact that repeated
imaging cannot produce the same result because
the repeated irradiation by the electron beam
leads to charge accumulation on' photoresist
structures surrounding the measured features. The
iradiation may also result in contamination,
when molecules and atoms in the vacuum and
wafer are activated by the electron beam and
subsequently deposited on the wafer. This
process forms a carbonaceous material decreasing
the electron emission from the surface, and
results in the features widening. Although
contamination tends to build up slower than’
charging, both act together fo distort the repeated

imaging results.

 Proposed solutions for these problems usually

take the form of recommendations concerning
operating conditions: reduce beam current,
decrease irradiation time, operate at lower
magnification, etc. These solutions are rather
weak palliatives: they inevitably decrease the
signal-to-noise ratio, and the charging and
contamination effects will always remain.

Although there is a consensus among
metrologists that charging and contamination
prevent accurate metrology (AMAG, 19973,
conventional GR&R studies of CD-SEM
measurements practically reproduce the primary
procedure  developed for mechanical
measurements. The latter does not imply any
testing of possible hysteresis: since there is no
influence by a micrometer on an object of control,
the repeated variation in measurements
characterizes only the random errors. By contrast,
repeated CD-SEM measurements are always
effectively accompanied by hysteresis due to
charging and/or contamination. Thus, results of
the SEM evaluation without distinction between
these effects’ influence and measurement error

. have little in common with true precision

estimates.



. Therefore, we propose to supplement the
conventional GR&R procedure with the testing
data obtained before the final stage of precision
evaluation. The objective of this step is to test if
there is only random difference between repeated
measurements. Testing could be performed using
either the Student’s r-test for paired readings, or
the Wilcoxon’s signed ranks test. The latter is
preferable, because it is distribution-free. Both
tests imply comparison of the average difference
between matched pairs (measured in units of
difference standard deviation for the r-test) with
some critical wvalue. If the difference is
insignificant, the obtained data could be used ‘as
is’ to gage precision evaluation. A significant
difference represents obvious evidence of
repeated irradiation influence on the measurement
results. In this case, true repeatability and
reproducibility estimates could be obtained only
after removal of induced frending. This can be
achieved by simiple subtraction of a linear term
from the obtained data. Experimental data
support the assumption of a linear physical model
for both charging and contamination effects on
the repeated measurements (Monahan and
Khalessi, 1992).

ALD.’s original plan (Fig. 2) to achieve the
GR&R study’s goals implies the following five-
step procedure (“short” form). This procedure has
been validated for application on different SEMs
and wafer structures.

Stepl. First Round Measurements. Some sites on
the wafer are measured under specified
measurement conditions, Every site is measured
twice on those layers (targets) used for production
routine measurements, o
Step 2. Second Round Measurements. After a
specified period of time, the tested wafer is
reloaded and the machine is reset. Two repeated

measurements are performed as in previous step .

and on the same sites and layers.

Time 1 Reloading,

7 Second Round Y, -
Y Measurements Y, }: Repeatability

¥ FirstRound X, .
Measurements XzI Repeatability
Reproducibility

No Trending
- Trending Presence
[ Trending Removal }

¥

——-—»-l Precision Evalﬁati@
Figure 2. GR&R Study (Short Form)
Step 3. Testing Obtained Data. The Wilcoxon’s

nrliad t4~ asyvero ﬂa':?' Of

igned ranks test is applied to every p
adjacent repeated measurements performed on the
same target, and placed in chronological order of
the time they were measured. If the variation in
these readings characterizes only the random
error occurring in every measurement, the
precision could be evaluated using the obtained
data (Step 5). Otherwise, the data should be
preliminary processed using the next step.

Step 4. Trending Evaluation and Removal. Once
a data trend is identified, its slope is evaluated
using the Least Square Method for Linear
Regression and taking into account that the least
square line passes through the result of the first
measurement on a ‘fresh’® target. Compensation
for the net effect of induced trending on the
obtained data is performed by simple subtraction
of the linear term as follows:

Y6 = Y - b(k-1)

where Y;¢ and Y;7 are corrected and measured
values of CD, respectively, b is the computed
slope, and %; is a measurement. number '

both repeatability and reproducibility could be
gvaluated on a ‘purified’ database using the
standard GR&R procedure. (A  detailed
description of GR&R can be found in several
textbooks, such as Barrentine, 1991.)
Repeatability evaluation is based on the average
spread of paired measurements on the same
targets; reproducibility is characterized by the
difference between pooled readings for all targets
at the 1st and 2nd steps minus the repeatability



contribution. Finally, the gage precision is
derived as square root of sum of variances due to
repeatability and reproducibility. Obviously, the
obfzined pooled cstimate of reproducibility
reflects differences in all processing conditions,
including loading and positioning settings as well
as stability—the changes of measurements over
time. »
This pooled estimate could be decomposed using
the ‘long’ version of the same plan:

Step 1. First Round, First Set Measurements -
Identical to Step 1 of the “Short” form.

Step 2. First Round, Second Set Measurements -
The tested wafer is reloaded, the machine is reset,
and the second set of measurements is taken on
the same targets.

Step 3. Second Round Measurements; Step 4.
Obtained Data Testing; Step 5. Trending
Evaluation and Removal - Identicalto Steps 2, 3,
and 4 of the ‘Short’ form, respectively.

Step 6. Gage Precision Estimation. The ‘purified®
data obtained in Steps 1, 2 and 3 are used for
repeatability evaluation. ‘Pure’ reproducibility
due to reloading, repositioning and reset is
characterized by the difference between pooled
readings for all targets in the 1st and 2nd steps
minus the repeatability contribution. Overall
reproducibility is characterized by the difference
between pooled readings for all targets in the 1st
and 3rd steps minus the repeatability
contribution. Finally, the gage precision is
computed as the square root of the sum of
variances due to repeatability and overall
reproducibility.

Note: Examination of the CD-SEM repeated
measurements reveals, as a rule, biased estimates
dependent on object of control properties. For
example, it was a great surprise for us to obtain
for the same SEM completely different values of
the precision-to-tolerance ratio for three products
with different structures but the same CD
specification requirements: 8.9%, 22.3% and
48.7%. Thus the precision of the same gage
should be considered as excellent, marginaily
acceptable and  absolutely unacceptable,
respectively! After applying the proposed
procedure for removal of effects associated with
feature transformations due to repeated

measurements, the core estimates for. two Iast

products were computed as 10.3% and 9.7%,
respectively. The first result did not change as no

trending was detected for this preduct. One can
see that the SEM’s true precision is the same for
the tested products.

Another problem associated with the metrology
of CD-SEM measurements 1is  accuracy
evaluation. It can be overcome using either line
width standards relevant to the kinds of features
encountered in VLSI fabrication or with a
traceable instrument. Unfortunately, neither is
available to the semiconductor industry (AMAG,
1997), so any discussion concerning accurate CD-
SEM measurements seems to be a Catch 22
situation. Achieving accuracy (which is
extremely important for contact and VIA CDs) as
well as obtaining more precise results for routine
production measurements will be presented in

further research in progress by the authors.

~ Customized Charting Methodology

Charts for Variables—The basic SPC concept

implies the study of the sources of total process

variation and its decomposition into controlled
(inherent) and uncontrolled variation due to
common and assignable causes, respectively.
Obviously, reduction of output variability can be
achieved only through identification, separation,
and assessment of different sources of variation.
Control charts proposed by Shewhart in the1920s,
represent a simple but powerful tool used to track
process variations and distinguish between
inherent and excessive variations. Most readers
are familiar with these charts, therefore we will
not dvvell on their principles or details.

A review of typical SPC schemes used in the
semiconductor industry has shown that they
usually use some suitable program for generating
two charts for variables at different stages of the
process: the x-chart for central tendency
monitoring, and the R-chart or S-chart for
variahility monitoring. The process engineer
usually fully relies wpon the background
processing software, implicitly supposing that if
charting is computerized, it is correct.
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Unfortunately, experience shows that this null-
hypothesis should sometimes be rejected.

To illustrate, let’s consider the problem of
monitoring a photolithographic process. Suppose
that the CD value is measured af several different
sites (from 3 to 9 as a rule) on a wafer, and some
wafers (usually 1 to 3) are selected at random for
testing from each lot. Modem quality control
equipment directly transfers the data to a
computerized system. The software interprets the
obtained measurements as a ‘rational subgroup’
used for setting control charts, performs the
calculations, and displays the charts on a monitor.
Aghast, the process engineer observes 15-20%
out-of-control points on the x- chart, and
intuitively feels that something is wrong because
the process should be shut down every half an
hour. The engineer concludes that SPC is merely
a game that management plays; SPC.is reduced to
a buzz word on the shop floor, and the result is
understandable frustration. + We have often
observed this phenomenon, and those who doubt
its veracity are referred to a very interesting case
study presented by Joshi and Sprague (Joshi and
Sprague, 1997).

The problem is associated neither with . an
incorrect sampling plan nor with the erroneous
procedure of calculating control limits on the x-
chart due to pon-normal data, site-to-site
correlations, or another factor, The data collection
plan is perfect. It has been proven that the chart is
quite robust, even under conditions of non-
normal data and cross-correlation. The problem is
that the x-chart should not be set ar qll. This
statement is explained using Fig. 3, showing the
sources of Inherent variation for the wafer
‘fabrication process. Actually, the measurements
performed on the same wafer at some fixed
locations characterize the within-wafer variation
(its non-homogeneity) only; they cannot be used
for evaluation of between-wafer or lot-to-lot
variation. (Roughly speaking, doing so is similar
to evaluating differences between bolts using
diameter measurements performed on the same
bolt but in different places.)

l Total Variation

r i |
[ Iherent Variation | fUncontrollable Variation
due to due to
Common Causes Assignable Causes
i

i
Between-Wafers:i Lot-to-Lot
Variation Variation

f
Measurement || Within- Wafer
Variation Variation

Figure 3. Total Process Variation

Generally, within-wafer variation is very
consistent, because chips (the true ‘preduction
units’) on the same wafer are simultaneously built
and processed. The wafer is characterized by the
pooled results of the measurements on the site
level. While during some steps in the production
process, such as diffusion, the wafers from the
same lot ‘run’ together, there are some operations
(for example, polishing) wherein each wafer is
processed separately. Therefore, the between-
wafer variation is usually larger than its within-
wafer counterpart. By pooling the. results of
testing some wafers belonging to the same lot, we
can obtain a process estimate at the top, lot level.
The method of sequentially pooling the results
obtained on the site level ipherently implies that
any attempt at using variation on the lowest level
(site) for spread prediction on the higher ones
(wafer or lot) will inevitably result in numerous
process overadjustments. By contrast, any reverse
transition will cause underadjustments when an
appreciable process change due to an assignable
cause is not detected.

To understand how individual sources of
variation contribute to the overall variation, and
to better identify where efforts should be
concentrated to reduce overall variation, A.L.D.
proposes a charting methodology based on the 3-
level hierarchy of semiconductor manufacturing.
The recommended scheme is intended to
simultaneously correct variability evaluation at
all levels.

Step 1. Set the R- or S-chart based on the site-
level measurements for the monitoring of within-
wafer variation. The number of points on the
chart is equal to the number of tested wafers.



Step 2. Set the R- or S-chart based on the wafer
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monitoring of between-wafer variation. The
number of points on the chart is equal to the
number of tested lots. N

~ Step 3. Set the x-chart (not the x-chart) based on
the lot means treated as individual measurements
for the monitoring of lot-to-lot variation. The
contro] limits are calculated using the moving
range of two successive lots.. The moving range
chart itself is not constructed because it does not
provide any additional information about the
process’s variability. The number of points on the
chart is equal to the number of tested lots.

Note that for the situation when one wafer from
each lot is tested, the between-wafer and lot-to-lot
variations are indistinguishable, and only two
charts (at the 1st and 3rd levels) can be used.

Fig. 4 illustrates the problem of the
conventional x—chart and shows the “famnily’ of
recommended charts set on the CD data. One can
see more than 30% out-of-control points beyond
the control limits on the x- -chart, whereas the
“family” exhibits ‘hard’ evidence of an absolutely

stable process.
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Figure 4. Commonly used X - chart, 2; 3; 4—
recommended family
Chart for Atiributes—A.  chart for fraction
nonconforming (p-chart) is usually used in the
- semiconductor industry for estimating current
yields. There are some problems associated with
this chart. First, if the fraction nonconforming p is
very small, the sample size.n should be large

enough to provide a high probability of finding at

leoct Ane nnnnnnfnrmmcr unit in the qamnle
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otherwise even one defectxve will result in a

salient point outside the upper control limit.

Besides, n should be large enough to achieve a

lower control limit, indicating the boundary

between random variation of the process and its -
improvement.  Obviously, extremely large

samples are needed for today’s very small p-

values. Second, the conventional p-chart is

practically unable to recognize small- process

level shifts due to its rather low sensitivity. An

additional problem is associated with the
binomial probability model underlying the setting
and analysis of a p-chart. This model is not very
adequate for wafer fabrication processes wherein
nonconforming units (chips) are usually clustered
on the wafer, because one of the model’s basic
assumptions is that successive units of producﬁon
are independent.

To overcome these obstacles, we propose the
Time-Between-Defectives chart, which reverses
the situation and displays the number of
defective-free samples. The higher the proportion
of defectives - the shorter the time between them.
Applying the wusual procedure of data
transformation to the exponentially distributed
time between defectives, one can obtain a
standard normal distribution and set a control
chart with two control limits. Points above the
upper limit indicate improvement of the process,

whereas those below the lower limit indicate
process drift.

Another alternative to the conventional p-chart is

~ its moving counterpart. This method is successful

for tracking sample averages. In its unweighted
version, the technique is rather simple: after
combining some successive samples, the average
value is calculated for this pool, then the ‘oldest”
value in the set is dropped and the newest one is
added. The weighted version requires assigning
different weights to the current and preceding
samples.

These charts preserve sensitivity to small process
drifts -while simultaneously Iimiting the
overadjustments by combining more than . one
sample. They are practically insensitive to the
interdependence  of successive units  of
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production. The lower control limit can be set
even for small sample sizes, providing the
opportunity  for process improvement and
troubleshooting problems associated with the
upper control limit,

‘Pure’ Capability Study

The conventional SPC strategy involves
judgment about the stability and uniformity of a
process, i.e., the ability to yield products with
specified properties. Uniformity is evaluated by
means of a capability study that describes process
performance in terms of customer requirements.
Potential process capability is characterized by
the capability indey Cp, equal to the ratio of the
distance between the specification limits and six
process standard deviations. Real capability is
- evaluated by means of the index Cpk that
accounts for the real process location. This index
is computed by taking the minimum range
between the process mean and a specification
limit divided by three process standard
deviations. Obviously, CkaCp (Cpk 1s equal to
Cp when the process is centered). A Cpk, value of
1.00 is conmsidered to be a de facto standard,
indicating that the process enables producing a
product that conforms to specifications.

Transition - from Quality Control to Quality
Assurance unavoidably involves the translation of
formal quality requirements from the language of
inspection (percent defectives) to that of SPC—
capability indices. These indices are used for self-
evaluation and as a kind of statistical report for
customers. In fact, indices have become part and
parcel of quality requirements that many

customers impose on their suppliers. To illustrate, ‘

Section 4.9.3 (Ongoing Process’ Performance
Requirements) of QS 9000 reads as follows: ‘For
stable processes and normally distributed data, a
Cpg value 21.33 should be achieved.’ (SPC
Reference Manual, 1995). The same requirement
is presented in Section 4.20 of the Semiconductor
Supplement to QS 9000.

Experience shows that the capability index values
are seldom calculated correctly. This is usually
due to not understanding the difference between
process performance indices (Pp, Ppp) and

capability indices (Cp, Cpl), and substituting one
for the other. The only but very important
difference between them is ‘that performance
indices characterize the total process variation
due to both common and assignable causes,
whereas capability indices are associated with the
inherent variation due to only common causes.
The total variation estimate is given. by the
process standard deviation oypz,7 computed by a
single pass through all sampling data. The
inherent variation could be evaluated using a
stable chart for spread, i.e., a chart without any
salient points due to some assignable causes. The
Cinherent Value is given by the centerline on the
R- or S-chart divided by a tabular factor d, or Cas
respectively, whose values depend on sample
size. -

Even the most powerful and commonly used
statistical software packages sometimes confuse
Pp with Cpk- As  already shown, Cpk
calculations should be based on the results of the
process stability analysis, i.e., directly connected
to the control chart setting. However, some
packages (such as JMP from SAS Institute, Inc.)
suggest that capability evaluation is a part of the
static distribution analysis, actually computing
Ppk while calling it Cpk-

Taking into account the 3-level data hierarchy,
the ANOVA procedure for SPC in semiconductor
manufacturing could be written as follows:

Uzz'_nherent =-02wf1‘hz'n-wafer + C 2.J‘be:)z‘wenen-my‘iar +
&lot-to-lot

If, for example, the R- and S-charts are used for
monitoring’ within-wafer and between-wafers
variation, respectively, then
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where: R is the average range, S is the average
standard deviation, MR is the average moving



range, # is a number of tested sites on a wafer,
and k is the number of wafers drawn from the

same lot.
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A comparative analysis of the process capability
estimates performed on numerous actual cases
showed that the erroneous calculations tend to
underestimate the capability index by as much as
30-40% of its true value. This serious problem of
underestimating indices could result in costly
process overadjustments, ‘hyperactive
product/process redesign, excessive quality costs,
and misleading both supplier and customer.

Strategy of Process Improvement

Quality improvement can be achieved by
reducing either the process’s output variability, or
its failure rate, or both. SPC is focused on
variability in the data used as a basis for effective
process management, whereas the failure rate isa
major concern of reliability programs, and will be
considered later.

SPC Strategy—The SPC objectives could be
formulated as the detection, recognition and
removal of any assignable causes, and also the
correct evalnation and elimination of every root
source of inherent process variation. As a rule, a
process is neither stable nor capable at starting
position 1 as shown in Fig. 5. This means the
process is not operating in the manner in which it
was designed to run, and continued operation
under such conditions is merely wasteful. The
inherent variation cannot be evaluated yet due to

continuous disruptions within the core process.’

Abnormal variation is dominant, therefore a
process set-up starts with a necessary empirical
effort to bring about and maintain stability.

Identifying the main sources of an ‘out-of-
control’ state by linking the subgroup identifier to
information  about  process  performance
conditions encourages the process’s galloping
toward ‘purification’ and quick removal of
obvious assignable causes. These local actions are
- usually within the ability of the operators or local
supervision and mandate, as a rule, fool

replacement, machine or gage recalibration, etc.
Management is less involved in resolution at this
level. Management involvement is required, for
PG, P RS WS | mdnaTTTY 10 MANSQ0ATY
Bﬁ.ﬂlll}jlc, YYLIEGIL iJG.l.Duu_u.bJ. JTUUCHLIIRLE, 20 Ao iy
standardization can be used as a countermeasure
against assignable causes, raw materials or parts
are unacceptable and dealing with vendors is on

the agenda, etc.
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Figure 5. SPC Over Process Life Cycle

Suppose that the process was brought into a state
of statistical control {position 2 of Fig. 5), but still
fails to meet the customer’s requirements. The
short-term period of fast SPC achievements by
means of ‘local’ actions is over, and now the
process’s inherent variability is of interest. Both
Juran and Deming warn against confusing
between removing assignable causes and process
improvement. They emphasize that the former
only brings the system back to where it should
have been in the first place, while the latter
represents the long-term program of never ending
gradual reduction of inherent process variability.

Usually, the system-related common causes (such
as raw materials, machinery, control equipment,
technology, working conditions) are beyond the
abilities of operators and local supervision to
correct. Instead, they require management

" involvement to make basic changes in the

process. At the same time, machine performance
depends on operators (inaccurate settings, sloppy

workstation, etc.). Thus SPC requires the

participation of the entire company—irom top



management to shop floor personnel. The only

difference is the degree of responsibility for

eliminating assignable causes and reducing
inherent variability.

- We are now at position 3 of Fig. 5, where the
process does meet customer expectations. Think
of what could happen if a process remains at this

. point over time: no bad lots, no machine failures,
no untrained operators, no measurement
€I701S...00W stop dreaming. Processes do vary;
they wander over time. The main goal of process
monitoring at position 3 is to prevent the
appearance of defectives as the result of stability
loss. The common notion of process drift implies
two subsequent stages in deterioration. First, the
process loses stability (transition from position 3
to 4 of Fig. 5). Left alone, an unstable process can
‘explode’ in any direction. What is remarkable is
that any such explosion usually leads back to
position 1 in Fig. 5, i.e., to poor quality product
yields. Therefore, the SPC ‘adjustment policy
applies immediate process correction at the
boundary ‘stable/unstable’ (F ig. 5), in contrast to
the ‘Out-of-Tolerance’ adjustment policy based
on FI and associated with the ‘capable/incapable’
boundary. The latter, having nothing fo do with
any process trends or lack of statistical control,
provides feedback signals when a process is

already in ‘syncope.’

Reactive and Proactive Actions Choice - In the

full improvement cycle “Detect — Isolate — Fix —
Verify” , the first and the last belong to SPC.

And what about the tools for problems “isolation™

and “fixing™? All of them are well known: Pareto
diagram, Flow-Chart, Fishbone diagram, etc.,
complimented by  different
practices. We demonstrate the Process FMEA as

a powerful tool for fault isolation, better contro] "

~and  cormective actions; Being actually a

“corporate memory” Process FMEA is..a

Knowledge base and Expert System for Control
and Decision Making. Proactive QA directed-at
problem prevention implies elimination, or at
least reduction, of the impact of possible
product/process malfunctions and failures.
Applying FMEA in the early stages of the
product life cycle, when changes in
products/process are relatively simple and easily

experimental

implemented, helps  to expunge  painful
syndromes such as late change crises. One of
FMEA’s most powerful advantages is the ability
to take verbal ideas for process improvement and
System bohavior rules, and transform them into
concrete numerical analyses and implementation
plans. These ideas and rules comprise a
Knowledge Base (KB) which should be
Incorporated into artificial intelligence systems
for expediting and enhancing the improvement
efforts. KB is a combination of ‘Declarative’ and
‘Procedural’ knowledge (DK and PK,
respectively). It is a collection of FMEA. hibraries,
and serves as an organization’s ‘collective
memery.” DK includes databases of failure modes
and failure causes on the component level,
corrective and preventive actions Iibraries; end
effects and associated severities library; and tests
library (detectability, methods, levels, types, etc.).
PX includes descriptions of ‘next-higher-effect’
chains and ‘end-effect’ allocations. By exploiting
the entire knowledge base, advanced engineering

‘methods, and the expertise of a company’s

personnel at all levels, FMEA allows for
analyzing all possible malfunctions, identifying
points at which control should take place, and
ensuting prevention of potential failures.

Conclusion

SPC is now accepted as the operating procedure
for wide range of industries. It provides a
common denominator for transitions between all
phases of a process, and thereby reduces
operational barriers. Applying the right SPC tools
at the right time is as important as having a
database full of statistics. Therefore, we have
tried to develop a statistical methodology adopted
and customized for the semiconductor industry.
The proposed methods do not require any
additional data other than the information used
for conventional SPC. The enhancement is that
advanced SPC applies engineering expertise and
novel statistical methods to raw data, combining
them all into a ‘clever’ database. The motto for
advanced SPC is ‘Better versus Current’—
improving processes in an evolutionary manner
through minor changes and low investments, Its
strong yield orientation restores SPC’s image of



being a positive, important, and value-adding
activity.
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